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Spin and Current Variations in Josephson Junctions 

A. Shnirman', Z. Nussinov2, Jian-Xin Zhu2, A. V. Balatsky2, and Yu. Makhlin'l3 
' Institut fir Theoretische Festko'rperphysik, Universitit Karlsruhe, 0-76128 Karbruhe, Germany 

a Theoretrcol Division, Loa Alamos National Labomtory, Los Alamos, New Mezico 87545, USA and 
' Landau Institute for Theoretical Physics, Kosygin st. 2, 117940 Mosww, Russia 

We study the dynamics of a single epin embedded in the tunneling barrier between two supercon- 
ductors. As a consequence of pair correlations in the superconducting state, the spin displays rich 
and unusual dynamics. To properly describe the time evolution of the spin we derive the dective 
Keldysh action for the spin. The superconducting correlations lead to an effective spin action, which 
is non-local in time, leading to unconventional precession. We further illustrate how the current is 
modulated by this novel spin dynamics. 

INTRODUCTION 

The analysis of spins embedded in Josephson junctions has had a long and rich history. Early on, Kulik [l] argued 
that spin flip processes in tunnel barriers reduce the critical Josephson current as compared to the Ambegaokar- 
Baratoff limit [2]. More than a decade later, Bulaevskii et al. [3] conjectured that r-junctions may be formed if spin 
flip processes dominate. The competition between the Kondo effect and the superconductivity was elucidated in [4]. 
Transport properties formed the central core of these and many other pioneering works, while spin dynamics was 
relegated to a relatively trivial secondary role. In the current article, we report on new non-stationary spin dynamics 
and illustrate that the spin is affected by the Josephson current. As a consequence of the Josephson current, spins 
exhibit novel non-planar precessions while subject to the external magnetic field. A spin in a magnetic field exhibits 
circular Larmor precession about the direction of the field. As we report here, when the spin is further embedded 
between two superconducting leads, new out-of-plane longitudinal motion, much alike that displayed by a mechanical 
top, will arise. We term this new effect the Josephson nututiola We further outline how transport is, in turn, 
modulated by this rather unusual spin dynamics. Our predictions are within experimental reach, and we propose a 
detection scheme. 

THE SYSTEM 

The system under consideration is illustrated in Fig. 1. It consists of two identical ideal s-wave superconducting 
leads coupled each to a single spin; the entire system is further subject to a weak external magnetic field. In Fig.(l), 
~ L , R  denote the chemical potentials of the left and right leads, B is a weak external magnetic field along the z-axis, 
and S = (Sz, S,, Sz) is the operator of the localized spin. The HamiItonian of the system reads 

where 'HL and RR are the Hamiltonians in the left and right superconducting leads, while cika ( C i k a )  creates (an- 
nihilates) an electron in the lead a in the state k with spin a! in the right/left lead for i = L / R  respectively. The 
vector u represents the three Pauli matrices and p is the magnetic moment of the spin. When a spin is embedded in 
the tunneling barrier, the conduction electron tunneling matrix becomes, not too surprisingly, spin-dependent [5 ,  61 
T = [TO i +TI S-61. Here TO is a spin-independent tunneling matrix element and TI is a spin-dependent matrix element 

FIG. 1: Magnetic spin coupled to two superconducting leads. 
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originating from the direct exchange coupling J of the conduction electron to the localized spin S. We take both 
tunneling matrix elements to be momentum independent. This is not a crucial assumption and is merely introduced 
to simplify notations. Typically, from the expansion of the work function for tunneling, % N J / U ,  where U is the 
height of a spin-independent tunneling barrier [7]. A weak external magnetic field B, N lOOGazlss will not influence 
the superconductors and we may ignore its effect on the leads. In what follows, we abbreviate pB,  by B. The operator 
ei+l2 is the (single electron) number operator. When the junction is linked to an external environment, the coupling 
between the junction and the environment induces fluctuation of the superconducting phase (4). 

THE EFFECTIVE ACTION 

Josephson junctions are necessarily embedded into external electrical circuits. This implies that the dynamics will 
explicitly depend on the superconducting phase 4. The evolution operator is given by the real-time path integral 

= 040s exp [iscircuit($) + iSspin(S)  + is tunnel(+,  S)] (3) I 
The effective action Stunnel describes the junction itself. We generalize the formerly known effective tunneling action 
for a spin-less junction [&lo] to the spin-dependent arena to obtain 

where ia(t, t') E G(t, t')G(t', t), iP(t, t') E F ( t ,  t ' )Ft(t ,  t') and the Green functions 

In Eq. (4) fK denotes integration along the Keldysh contour. We now express the spin action on Keldysh contour 
in the basis of coherent states 

Here, S denotes the magnitude of the spin S. The second, Wess-Zumino-Novikov-Witten (WZNW), term in Eq.(8) 
depicts the Berry phase accumulated by the spin as a result of motion of the spin on a sphere of radius S [11, 121. 
Explicitly, 

The additional integral over r allows us to express the action in a local form. At r = 0 the spin is set along the a 
direction at all times, S(t ,O)  = const; at T = 1 the spin field corresponds to the physical configurations, S( t ,  1) = S ( t ) .  

DYNAMICS 

We now perform the Keldysh rotation, defining the values of the spin and the phase variables on the for- 
ward/backward branches of the Keldysh contour (e.g., S"?' for the upper and lower branch) and rewriting all the 
expressions in terms of their average (classical component S) and difference (quantum component 1): 

s (S" + S')/2, 1 E S" - sl, s 1 = 0. (10) 
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FIG. 2: The sphere or radius S for the vectors S"*'( t )  is shown. The path C describes the evolution of the spin along the upper 
(u) and lower ( 1 )  branches of the Keldysh contour. To properly describe the spin dynamics on this closed contour we analyze 
the WZNW action, see Eq. (9). For clarity, we draw a small piece of the closed trajectories. 

After the Keldysh rotation we obtain 

S W Z N W  = 2- S2 1' d 7 / d t [ S y t , T )  f ( a 7 s y , T )  x a,s"(t,T)) - (u  --f l ) ]  . (11) 

The relative minus sign stems from the backward time ordering on the return part of C. The individual WZNW 
phases for the upper (u) and lower (I) branches are given by the areas spanned by the trajectories S't'(t) on the 
sphere or radius S divided by the spin magnitude (S). The WZNW term contains odd powers of 1. Insofar as the 
WZNW term of Eq.( l l )  is concerned, the standard Keldysh transformation to the two classical and quantum fields, 
S and 1, mirrors the decomposition of the spin in an anti-ferromagnet (AF) to the two orthogonal slow and fast fields 
[15]. The difference between the two individual WZNW terms in Eq.(11) is the area spanned between the forward 
and backward trajectories. For close forward and backward trajectories the WZNW action on the Keldysh loop may 
be expressed as 

S W Z N W  = - S2 / d t l . ( S x & S ) .  (121, 

For the spin part of the (semi-classical) action we, then, obtain 

Sspin= d t B - l + -  d t l . ( S x & S ) .  s S2 's 
Next, we perform the Keldysh rotation to the classical and quantum components with respect to both the phase and 

spin variables in the tunneling part of the effective action. Towards this end, we introduce (with notations following 
Refs. [8, lo]) 

fj (4" + @)/2 , x f fj" - fjd . (14) 

(15) 

With these definitions in hand, the tunneling part of the action reads 

Stunnel = Sa + 3, 7 

where the normal (quasi-particle) tunneling part Sa is expressed via the Green functions aR E e( t  - t')(a> -a<) and 
a " ( ~ )  G a> + a<, where ia>(t, t') E G>(t, t')G<(t',t) and ia<(t,t ') G<(t, t')G>(t', t). Similarly the Josephson- 
tunneling part Sp is expressed via the off-diagonal Green's functions PR = e(t - t')(p> - p') and P"(W) E p >  +p<,  
where ip>(t,t') E F>(t , t ' )Ft>(t , t ' )  and iP<(t , t ' )  E F<(t , t ' )Ft<(t , t ' ) .  In this paper we are interested in the 
interaction between the supercmrent and the spin. Thus we provide the expression for the Josephson part: 

s, = s d t  s dt' 4pR(t, t') x 

[ { [2Ti - 2$?S(t) 
X ( t )  cos - X@'> - - 1 T: l(t) 

4 2  
S( t ' ) ]  sin 4 
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+ /dt/dt'pK(t,t')  x 

2 

The normal-tunneling part Sa is obtained from Sp by the following substitution: pRIK(t, t') + aR/K(t,t'), $(t') -+ 
-$(t'), and X(t') + -X(t'). The Keldysh terms (those including PK and aK), which normally give rise to random 
Langevin terms (see, e.g., Ref. [lo]) are, in our case, suppressed at temperatures much lower than the superconducting 
gap (T << A), due to the exponential suppression of the correlators p"(w) and a K ( w )  at  w < A. 

To obtain P R  we start from the Gor'kov Green functions 

where the quasi-particle energy E k  E d m ,  ek being the free-conduction-electron dispersion in the leads. Putting 
all of the pieces together, we find that 

sin[(Ek + EP)(t - t')] . A2 - 
2EkEp pR(t - t') = 0(t - t') 

k ,p  

The kernel pR(t  - t') decays on (short) time scales of order O(h/A). Varying the full action with respect to the 
quantum components 1 and x and setting these to zero, we obtain coupled equations of motion for both the spin and 
phase: 

-- 4(t> + 
2 dS(t) - S( t )  x B + T: dt'4pR(t - t') S ( t )  x S(t') cos 

dt S I 

(20) 
4(t> + 4(t') 

2 
JScircuit Ix-0 = - dt' 2pR(t - t') (To2 - T;S(t) . S(t')) sin 

JX (t) 
Note, that, if the rest of the circuit contains dissipative elements, e.g., resistors, then Scircuit will contain the non- 
vanishing Keldysh components, and one should include the corresponding Langevin terms into Eq. (20). The rather 
complicated equations of motion (19) and (20) are very general. To make headway, we now adopt a perturbative 
strategy. In Eq.(19), we first assume an ideal voltage bias, Le., an imposed phase +(t) = W J t ,  where the "Josephson 
frequency'' WJ = 2eV/h. To this lowest order, we neglect the influence of the spin on the phase. Next, we use the 
separation of characteristic time scales to our advantage. To this end, we note that the spin dynamics is much slower as 
compared to electronic processes, i.e. WJ,  B << A. This separation of scales allows us to set S(t') N S(t)+(t'-t)dS/dt 
in the integrand of Eq.(19), wherein we obtain 

dS dS 
- = A S x  - s i n w J t + S x B .  
dt dt 

Here, 

with g1 E ( 2 ~ 2 ' 1 ~ ) ~  the spin channel conductance. In Eq.(22) we employ the separation of time scales (WJ <( A)  
again. When expressed in the spherical coordinates (in the semi-classical limit) S = S(sin 0 cos 4, sin 0 sin 4, cos e) ,  
Eq.(21) transforms into two simple first order differential equations 

d0 d4 - = -SA - s i n 0 s i n w ~ t .  
dt dt 

(23) 

(24) 
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FIG. 3: The resulting spin motion on the unit sphere in the general case. As in the motion of classical spinning top, the spin 
exhibits undulations along the polar direction. 

These equations can be solved exactly. For a spin oriented at time t = 0 at an angle 80 relative to B, 

with c = S A / d m a n d  y = -SAB/2wJc. For SA << 1, + N -Bt and 8 N OO-SA(B/wJ) sineo CoswJt. Typically, 
whenever a spin is subjected to a uniform magnetic field, the spin azimuthally precesses with the Larmor frequency 
WL = B. In a Josephson junction, however, the spin exhibits additional polar (8) displacements. The resulting 
dynamics may be likened to that of a rotating rigid top. The Josephson current leads to a non-planar gyroscopic 
motion (Josephson nutations) of the spin much like that generated by torques applied to a mechanical top. For small 
A, we find nutations (see Fig. 3) of amplitude O1 - O2 cc sin8 . S - A a e cc sin8 S g1 . f .  

The origin of the first term on the rhs of Eq. (21) can be understood as follows (this origin can be also traced in the 
calculations): the spin is subject to the electron-induced fluctuating field h = TlCei$/2ctac+h.c.. The same coupling 
may be thought of as an influence of the spin on the leads, which results in a non-zero low-frequency contribution 
Ghto h. Since the response function of the electron liquid is isotropic but retarded, 6h(t) is not aligned with S(t)  but 
contains information about the values of S(t') at earlier times. The response function decays on a time scale - h/A, 
much shorter than the period of the spin precession, - 1/B. As a consequence, in addition to a contribution cc S the 
field h acquires a component cc S / A ,  which leads to the first term on the rhs of Eq. (21). 

The rhs of the second equation of motion (20) clearly corresponds to the Josephson current. Indeed, in the Keldysh 
formalism one has I = (27r/@o)dS/dx (instead of I = (2lr/@o)dS/d+). Thus we obtain for the Josephson current 

We start from the lowest order (local in time) adiabatic approximation, i.e. we set S ( t )  = S( t ' )  and +(t) = +(t'). This 
yields 

where EJ,O E 2T; J"d tpR( t )  = x2p2T;A = (1/4)goA is the spin-independent Josephson energy [2] (go being the 
conductance of the spin-independent channel). The second term of Eq. (26) gives the spin-related reduction of the 
Josephson critical current studied in Ref. [l]. We now evaluate the lowest-order correction to this equation due to 
deviations from locality in time and spin precessions... Expanding S(t ' )  in Eq. (25) in (t' - t )  and using the fact that 
for the Larmor precession we have Sa S = 0 and S S = B2 (S2 - S2), we find a correction to the Josephson current 
which depends on Sz: 



6 

FIG. 4: A SQUID-based detection scheme. The SQUID monitors the magnetic field produced by the magnetic cluster in one 
of the junctions. 

where ~ E J  G -T?B2 J d t p R ( t )  t2 = (?r2/16) T?p2 (B2/A). Here, we clearly elucidated the manner in which the spin 
dynamics alters the Josephson current. 

For S = l/2 the semi-classical approximation is insufficient. In this case it is easier to perform a calculation with spin 
operators [13], rather than a path integral. One, then, obtains [13] an expression for the Josephson current identical 
to Eq. (25) with S ( t )  being, however, the spin operator in the interaction representation. Using the commutation 
relations of the spin operators one obtains an extra contribution to the Josephson current proportional to S,. This 
allows reading out of the spin state via the Josephson current. This extra contribution scales as S while the spin 
dependent contributions in Eq. (27) scale as S2. 

DETECTION 

We now briefly discuss a detection scheme for the Josephson nutations for S >> 1, e.g., in the semi-classical limit. In 
principle the nutations should affect the Josephson current. The level of approximation employed in this paper was, 
however, insufficient to describe this effect. Indeed, one has to substitute S(t) containing the nutations into Eq. (25). 
As the amplitude of the nutations is of the order 91, the correction to the current will be of the order 9:. We will 
study this correction elsewhere. 

Here we discuss a more direct detection strategy. The spin motion generates a time-dependent magnetic field, 
6B(r, t) = %[3r(r .m(t)) -r2m(t)]/r5, superimposed on the constant external field B. Here, lr is the position relative 
to the spin, with magnetic moment m(t) = p S ( t ) .  A ferromagnetic cluster of spin S = 100 generates a detectable 
field 6B N T appears a micron away from the spin. For a SQUID loop of micron dimensions located at 
that position, the corresponding flux variation 6@ N ~O-’@,O (with @O a flux quantum) are within reach of modern 
SQUID’S. For such a setup with TI/To N 0.1, the typical critical Josephson current is Jt’ N 10 PA, lAl = 1 meV, 
and eV - 10-31Al, we find that AS w 0.1. Since S, = SsinO cos +, S, = Ssine sin+, the spin components orthogonal 
to B vary, to first order in (AS), with Fourier components at frequencies I W L  f W J I  (WL = B ) ,  leading to a discernible 
signal in the magnetic field B + 6B. For a field B N 200 G, WL N 560 MHz, and a new side band will appear at  
I W L  - W J I ,  whose magnitude may be tuned to 10-100 MHz. This measurable frequency is markedly different from the 
Larmor frequency W L  . 

The efficiency of the detector may be further improved by embedding the spin in one of the Josephson junctions 
of the SQUID itself. The setup is sketched in Fig. 4. The Josephson junction containing the spin is used both for 
driving the nutations and, together with the second junction of the SQUID, for detecting them. 
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DISCUSSION 

In this article, we illustrated that the dynamics of a spin embedded in a Josephson junction is richer than appreciated 
hitherto. We reported unusual non-planar spin motion (in a static field), which might be probed directly and which 
was further shown to influence the current in the Josephson junction. Using a path-integral formalism, we described 
this non-planar spin dynamics and the ensuing current variations that it triggers. To describe the time evolution 
we derived the effective action for a spin of arbitrary amplitude S on the Keldysh contour. In passing, we noted a 
similarity between the resultant effective action and that encountered in quantum antiferromagnetic spin chains. Our 
central results are encapsulated in the effective action (16). 

In the semi-classical limit of large S, relevant to ferromagnetic spin clusters [14], we obtained two coupled equations 
of motion (Eqs. (19) and (20)). These equations may be solved perturbatively, as outlined above, or numerically. We 
presented an exact limiting-case solution and illustrated how the new spin dynamics may be experimentally probed. 

The formalism developed can also be applied to the minimal S = 1/2 system. In this case, however, it is simpler 
to perform a calculation with spin operators [13], rather than a path integral. 
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